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Why large N QCD?

• Large N phenomenology is interesting. It is usually close to QCD with three colors.

• Careful lattice studies have shown that it is possible to extract physical quantities in the
large N limit, particularly in the pure gauge sector.

• Strongly connected to string theories. Predictions from string theories should be compared
to large N results in QCD.

• There are N 2 gauge degrees of freedom but only N fermion degrees of freedom per
fermion flavor if the fermions are in the fundamental representation

• There is no back reaction from the fermions in the ’t Hooft limit: The number of colors, N
goes to infinity at a fixed ’t Hooft coupling, λ = g2N with a finite number of fermion flavors
in the fundamental representation.

• Fermions are naturally quenched in the ’t Hooft limit.
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A central gauge invariant observable

• We will consider large N gauge theories on a torus of size l. On the lattice, we will have L
and b, with b = 1/g2N and L going to infinity such that l is held fixed.

• Let W ∈ SU(N) denote the parallel transporter around a closed loop C (Wilson loop) or a
closed loop that winds around the torus (Polyakov loop).

• The eigenvalues eiθk, k = 1, · · · , N of W are gauge invariant and independent of the point
where the loop is opened.

• Consider the quantity ρ(θ)dθ which is the probability of finding an eigenvalue eiθk in the
range θ < θk < θ + dθ for some k.

• The above observable will help us understand all the transitions we are interested in. It
contains information about traces of arbitrary powers of W . In this sense, it is a non-local
observable.
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Transition in the plaquette distribution

• Consider the ρ(θ) associated with an elementary plaquette.

• ρ(θ) has no gap at lattice strong coupling and develops a gap around θ = π as the coupling
gets weaker on the lattice.

• This is a bulk transition on the lattice. Only the phase with the gap has a continuum limit.
We call this the “cold” phase and denote it by “c”. The unphysical phase is the “hot” phase
and is denoted by “h”.

• This transition depends on the lattice action and is related to the cross-over seen in lattice
simulations at N = 2 and N = 3.

• It is the third order Gross-Witten transition in QCD2.

• This transition is first order in d = 3 and d = 4.
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Phases of continuum large N QCD

• Consider ρ(θ) associated with the Polyakov loops in different directions.

• If none of the U(1) symmetries are broken, ρ(θ) will be uniform.

• A peak at some θ in the distribution of ρ(θ) indicates breaking of the U(1) symmetry in the
corresponding direction.

• Two dimensions: There is only the 0h and the 0c phase. Polyakov loops are not broken and
Eguchi-Kawai reduction holds on the lattice

• Three and four dimensions. There are several phases. There is the usual 0h phase and the
0c phase. But we also have 1c, 2c and 3c phases in three dimensions and in addition a 4c
phase in four dimensions. The number of the phase corresponds to the number of
directions along which Polyakov loops are broken.

• There is a physical torus size associated with each one of these transitions.
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Unbroken and broken Polyakov loops
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't Hooft Coupling b=1/g
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Continuum reduction
• There exists a critical size lc that separates the 0c phase (l > lc) from the 1c phase (l < lc).

• Continuum reduction holds in the 0c phase and the theory does not depend on l if l > lc.
This theory is the confined phase off large N QCD,

• Chiral symmetry is broken in the 0c phase in the large N limit of QCD4 and

l3c
N
{ψ̄ψ} ≈ (0.65)3.

• Consistent with chiral symmetry breaking, m2
π ∝ mq and

fπlc ≈ 0.269.

• lc ≈ 1/Tc and theory does not feel temperatures less than Tc.

• The theory in the 1c phase behaves like finite temperature large N QCD in the deconfined
phase.

• There is a finite latent heat associated with the 0c to 1c transition (J. Kiskis,
hep-lat/0507003)
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Fermion’s role in the 1c phase

• Fermions do matter in the 1c phase even in the ’t Hooft limit in the usual sense that
boundary conditions of fermions matter in the temperature direction.

• Let θ be the phase associated with the U(1) that defines the boundary condition with
respect to the phase of the Polyakov loop in the broken direction. Let θ = 0 define
anti-periodic boundary conditions.

• The fermion determinant will depend on θ and dynamics should pick θ = 0.

• Consider the lowest eigenvalue of the overlap Dirac operator as a measure of the fermion
determinant and look at this as a function of θ.

• The data shows a gap in the spectrum for all θ as long as T > Tc. This shows strong
interaction in the color space.

• The gap is the biggest for θ = 0.

• The gap is linear in θ indicating free-field like behavior and the effect of the interactions in
color space is to lower the effective temperature.
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Chiral symmetry restoration in the 1c phase

• Work on a L3 × L4 lattice for several couplings b such that they are all in the 1c phase.
Note that it is not necessary to pick L4 = L. This freedom enables us to get several
temperatures for the same L on the lattice.

• Define the gap, G, to the average of the lowest eigenvalue of the overlap Dirac operator.

• Use Lc(b) to define a dimensionless gap, g = GLc(b), and a dimensionless temperature,
t = L4Lc(b).

• A plot of g vs t shows that the data fall on a universal curve for small lattice spacing.

• The data fits 1.76
√
t− 0.93 for 1 < t < 1.5.

• There is clear numerical evidence for a first order phase transition in the fermionic sector.

• If we could supercool in the 1c phase below t = 1, we would find T chiral
c ≈ 0.93T deconfined

c

• Holographic models usually find a first order chiral transition.
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Model for the restoration of chiral symmetry

• Consider a gaussian Random Matrix model for a general complex matrix C. Then consider

the massless Dirac operator as D =

(
0 C

−C† 0

)
. One can compute the joint distribution of

the eigenvalues iλ of D in this model. A single parameter, namely the chiral condensate Σ,
fits QCD data to this model.

• This can be generalized to fit the data in the deconfined phase where chiral symmetry is
restored.

• Consider D =

(
0 C + iω

−C† − iω 0

)
as the Dirac operator where ω is the lowest

Matsubara frequency at a given temperature.

• This model undergoes a phase transition at some ωc and we look at ω > ωc to match the
data in the chirally symmetric phase.

• The natural quantities to compare are θi = λi − λ1 for i > 1 since we have a soft edge in
the symmetric phase. There is evidence that the joint distribution of θi in the random matrix
model agrees with QCD in the 1c-phase.
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Wilson loops with and without folding
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Durhuus-Olesen transition

• The eigenvalue distribution ρ(θ, A) of Wilson loop operators in two dimensional QCD only
depends on the area and it is the Fourier transform on

1

N
〈TrW n〉 =

1

n
L

(1)
n−1(2An)e−An

This is analytic but it results in non-analytic behavior in ρ(θ, A) since it involves sum over n
from 0 to ∞.

• Implicit formula exist for ρ(θ, A) in the continuum for two dimensional QCD and one finds
that the distribution has a gap if Aλ < 4.

• Using the notation of different phases in D > 2, the abobe transition is one seen in an
observable within the 0c phase of QCD2

• This phase transition also exists in QCD4 and separates the strong coupling phase of
continuum QCD from its weak coupling phase.
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Renormalized Wilson loop operator

The following steps defines a renormalized Wilson loop operator for a rectangular loop on the
lattice that was used to investigate the Durhuus-Olesen phase transition:

• APE smearing to eliminate perimeter and corner divergences:

X(n+1)
µ (x; f ) = (1− f )U (n)

µ (x; f ) +
f

6
Σ
U

(n)
µ (x;f)

U (n+1)
µ (x; f ) = X(n+1)

µ (x; f )
1√

[X
(n+1)
µ (x; f )]†X

(n+1)
µ (x; f )

- Σ
U

(n)
µ (x;f)

is the staple associated with U
(n)
µ (x; f ).

- f is the smearing parameter and has to be in the range 0 < f < 0.75.

- U
(0)
µ (x, f ) = Uµ(x), the original link element distributed according to the standard

Wilson plaquette action.

• The smeared variables define the renormalized Wilson loop operator,

Ŵ [L1, L2; f ;n =
(L1 + L2)

2

4
],

and the associated eigenvalue density ρ̂(θ).
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The continuum operator Ŵ (l, f )

• Lattice coupling: b = 1
g2N

• Lattice spacing in 0c: a(b)tc = 1/Lc(b)

• Pick L1 = L2 = L (square loop) with the physical size given by l = La(b) and we will
measure this in units of tc.

The continuum limit is taken at a fixed f and l by taking a(b) to zero. The observable itself will
be ρ̂(θ; l, f ). We find that

• This non-local observable undergoes a transition from being gap-less for large l (or small f )
to having a gap for small l (or large f ).

• There is a critical line in the (f, l) plane given by fc(l) where ρ(θ; l, fc(l)) is non-zero for all
−π < θ < π but ρ(±π; l, fc(l) = 0.

• ρ(θ; l, f ) exhibits universal behavior according to Durhuus-Olesen formulas and the
transition is continuous.
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